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ABSTRACT

Time series with a non-constant sampling interval (i.e., uneven time series) are ubiquitous in the geosciences. This is due to 
random sampling, gaps in sampling, missing data, hiatuses, or the transformation between a spatial scale and a temporal 
scale when, for example, the sedimentation rate is not constant. The preferred approach in the spectral analyses of these un-
even sequences are interpolation-free spectral methods, and the Lomb-Scargle periodogram is a popular choice. In the work 
presented here, the maximum entropy spectral estimator, modified to deal with uneven time series, is proposed as an alter-
native to the periodogram. The appeal of this approach is that the maximum entropy spectral estimator is a high resolution 
estimator. The proposed methodology uses the equivalence between the maximum entropy and the autoregressive spectral 
estimator. The permutation test is used to assess the statistical confidence of the estimated power spectrum and real and sim-
ulated time series are used to illustrate the performance of the proposed methodology. This study shows that the maximum 
entropy spectral estimation of uneven time series avoids the side lobe problem that plagues the Lomb-Scargle periodogram 
whilst maintaining its high resolution for short time series. The maximum spectral estimator works well in cases where large 
proportions of the data are randomly missing, when there are gaps in the data, where there is one or more significant hiatus 
in the process that generates the data, and for time series with random sampling. 
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Análisis espectral de máxima entropía para series irregulares en geociencias 

RESUMEN

Las series temporales con un intervalo de muestreo no constante aparecen con mucha frecuencia en Ciencias de la Tierra. 
Esto se debe a que el muestro ha podido ser aleatorio, o porque ha habido fallos en la toma de datos, hiatos, o por la trans-
formación de una escala espacial (sondeo, columna estratigráfica, …) a una escala temporal cuando las tasas de sedimenta-
ción no son constantes. El método preferido para el análisis espectral de estas series temporales con muestreo irregular son 
los métodos que no requieren de una interpolación explícita de la seria para pasar a un muestreo regular, sino que tratan 
directamente los datos con espaciado no constante y, de entre estos métodos, el periodograma de Lomb-Scargle ha sido 
una elección muy frecuente por parte de los investigadores. En el trabajo aquí presentado, el estimador de máxima entropía, 
modificado para tratar con series temporales con muestreo no constante, se propone como una alternativa al periodograma. 
El atractivo de la metodología que se propone es que el estimador de máxima entropía es un estimador de alta resolución. 
El método propuesto aprovecha la equivalencia que existe entre el estimador espectral de máxima entropía y el estimador 
espectral autorregresivo. Además, se utiliza el test de permutación para evaluar el nivel de confianza estadístico de espec-
tro de potencia estimado. Asimismo, se utilizan series temporales reales y simuladas para ilustrar el resultado de aplicar la 
metodología propuesta. Este trabajo muestra que el estimador de máxima entropía para series temporales irregulares evita 
los problemas de los lóbulos laterales que plagan las estimaciones por el periodograma de Lomb-Scarge mientras que se 
mantiene la alta resolución del estimador espectral de máxima entropía para series temporales cortas. Los resultados con el 
estimador de máxima entropía han resultado ser satisfactorios en los casos en los que importantes proporciones de los datos 
se han perdido al azar, cuando hay huecos a intervalos regulares en la serie de datos, cuando hay uno o más hiatos en la serie 
así como para series donde el muestreo ha sido aleatorio. 
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Introduction

Spectral analysis of time series is extensively used 
in seismology (Park et al., 1987), paleoclimatology 
(Pestiaux and Burger, 1984) and cyclo-stratigraphy 
(Schwarzacher, 1975, 1993; Weedon, 2003). One of the 
problems that has been resolved by spectral analysis is 
detecting periodic signals that are hidden in noisy time 
series. The procedure consists of the discrete sampling 
of a variable of interest in time or in space to generate 
an experimental time series to which any of the many 
available spectral estimators can be applied (Marple, 
1987). In a second step, the statistical significance of 
the estimated power spectrum is assessed, and in a 
final step, the physical significance of the statistically 
significant spectral peaks is interpreted. In this man-
ner, for example, periodic components that have been 
found in stratigraphic sequences (Schwarzacher, 1975) 
and other proxies of paleoclimatic data have been 
linked to Milankovitch cycles related to variations in 
the Earth’s insolation caused by changes in its orbit-
al parameters (Schwarzacher, 1993). There are many 
approaches that have been proposed to estimate the 
power spectrum of even time series, i.e., time series 
for which the data have been regularly sampled with a 
constant sampling ratio, providing a constant distance 
between consecutive data. Examples of computer pro-
grams for power spectrum estimation with regular se-
quences are given in Pardo-Igúzquiza et al. (1994) and 
Pardo-Igúzquiza and Rodriguez-Tovar (2004, 2005) for 
the periodogram, the Blackman-Tukey spectral estima-
tor, the Thomson multi-taper in signal processing, and 
maximum entropy estimators. 

Uneven time series are common in the geoscienc-
es. There are many reasons for this including hiatus-
es or gaps in stratigraphic sequences (Weedon et al., 
2019), gaps in time series (i.e., when, for various rea-
sons, measurements during certain periods are not 
valid), and the general missing-data problem where 
data are missing at random locations in the complete 
data set. In geoscience applications, uneven sampling 
is very frequent when data are measured in a spatial 
sequence, for example along a borehole or a strati-
graphic succession. Even if a constant sampling inter-
val is used, the resulting time series will be uneven if 
the sedimentation rate is not constant along the suc-
cession.

For time series with a constant sampling interval 
and only a few randomly missing data, the missing 
values should be able to be reliably estimated by some 
form of interpolation which enables the spectral anal-
ysis of the reconstructed sequence to produce relia-
ble estimates. Although there is a potential problem in 
defining “few” in this context, it is generally accepted 

to be less than 10% of the complete sequence (Par-
do-Igúzquiza and Rodríguez-Tovar, 2013). For larger 
amounts of missing data, or when samples are ran-
domly located (random sampling), it is preferable to 
avoid interpolation because it modifies the spectral 
content of the sequence (Schulz and Stattegger, 1997; 
Schulz and Mudelsee, 2002). Some spectral meth-
ods have been adapted to particular situations such 
as periodically gapped data (Larsson and Li, 2003). 
Deconvolution has been proposed as a means of re-
moving artefacts introduced by missing data (Roberts 
et al, 1987; Heslop and Dekkers, 2002) and, theoreti-
cally, most spectral estimators can be adapted to deal 
with uneven time series (e.g., Stoica and Sandgren, 
2006; Babu and Stoica, 2010). In geoscience applica-
tions, the Lomb-Scargle periodogram (Lomb, 1976; 
Scargle, 1982) is the most popular choice for the 
spectral analysis of uneven time series, perhaps be-
cause of the ample choice of public domain comput-
er programs for conducting the analysis, for example 
the computer codes in Press et al. (1992), Schulz and 
Statteger (1997), Schulz and Mudelssee (2002) and 
Pardo-Igúzquiza and Rodríguez-Tovar (2012), among 
others. Notwithstanding the popularity of this meth-
od, it suffers from the problems attributed to the 
periodogram estimator such as the non-decreasing 
estimation variance (Zhang et al., 2005) which is ad-
dressed by smoothing the estimates, and the side 
lobes inherent in the estimation that can be mitigated 
by deconvolution (the CLEAN procedure, Heslop and 
Dekkers, 2002). The maximum entropy (ME) spectral 
estimator is a high resolution spectral estimator that 
performs well even for short time series (Ables, 1974; 
Egozcue, 1980; Pardo-Igúzquiza and Rodríguez-Tovar, 
2006). Some drawbacks of the maximum entropy es-
timator have been reviewed in Pardo-Igúzquiza and 
Rodríguez-Tovar (2006).

Methodology

The maximum entropy spectral estimator (Burg, 1967, 
1975; Papoulis, 1984) is the spectral power spectrum 
that maximizes the entropy (E):

over the class of all power spectra that satisfy the 
constraints given by making (theoretical) auto-covari-
ances equal to sample auto-covariances (i.e., auto-co-
variances estimated from the data):
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where (h) = (–h) is the estimated covariance for 
lag h, i is the imaginary unit and ω=2πf is the angular 
frequency (radians per sampling interval); f is the fre-
quency in cycles per sampling interval.

Brockwell and Davis (1991) show that the ME spec-
tral estimator has the form:

where  is the variance of a zero-mean white noise 
stochastic process that depends on the order of the 
AR process, and {ak;k=1,…,M} are the M autoregressive 
coefficients that also depend on the chosen order M. 
These M +1 parameters must be estimated from the 
experimental data in order to apply the ME spectral 
estimator of Eq. (3). One way of estimating these pa-
rameters is to use the Yule-Walker equations (Papoulis, 
1984). To avoid the inversion of large covariance matri-
ces, the Durbin-Levinson algorithm (Brockwell and Da-
vis, 1991) can be used to estimate recursively the AR 
coefficients and noise variance. The spectral estimator 
in equation (3) is equal to the autoregressive (AR) spec-
tral estimator of order M (Ulrych and Bishop, 1975). 
Strictly speaking, the AR estimator in Eq. (3) is the ME 
estimator when the random function (stochastic pro-
cess) is Gaussian (Papoulis, 1984).

A requirement for a maximum entropy spectral es-
timator for uneven time series is that it must yield esti-
mates that are identical to those of the AR spectral es-
timator. The equivalence of the two estimators can be 
demonstrated for any data set by using the maximum 
entropy spectral estimator implemented in MAXEN-
PER (Pardo-Igúzquiza and Rodríguez-Tovar, 2005) and 
the autoregressive spectral estimator implemented in 
AUTORSE2 (Pardo-Igúzquiza et al., 2000). Broersen et 
al. (2004a) used autoregressive spectral analysis for 
cases when observations are missing and estimated 
the AR models using an approximate maximum likeli-
hood function (Bos et al., 2002; Broersen et al., 2004b). 
A more straightforward procedure is considered here. 
A zero-mean time series of N data: 

 where:

can be considered a realization of a second-order 
stationary random process.

The time series in equation (4) pro-
vides a complete, even sequence in the in-
terval [t1, tN] with constant sampling ratio Δ. 
The auto-covariance function (Papoulis, 1984): 

completely determines the parameters of the AR pro-
cess which, in turn, completely determine the power 
spectrum estimates. The parameter M is the number 
of terms in the autocorrelation process used for es-
timating the power spectrum. The main difficulty in 
applying the AR spectral estimator is the choice of an 
optimal value of this parameter and various methods 
have been proposed for choosing it. Some methods 
are based on criteria such as the Akaike information 
criterion or the final error prediction (Ulrych and Bish-
op, 1975). The order is often chosen empirically with 
a value between N/5 and N/2, where N is the number 
of experimental data points. M = 2N/ln(2N) is another 
popular empirical choice. If the chosen order is small, 
the variance of the estimates will be small, but the 
bias will be large, whereas if the chosen order is large, 
the bias will be small, but the variance will increase. 

An alternative estimator of the autocovariance is 
obtained by replacing the factor in equation (6) by the 
factor which provides an unbiased estimator. However, 
this can produce inconsistent estimated power spectra, 
such as power spectrum estimates with negative values 
(Priestley, 1981; Chatfield, 1991). 

If the time series is uneven but the data are on a 
regular grid (i.e., sampling with a constant interval) 
and there are missing data, irrespective of whether 
there are hiatuses, randomly missing data, gapped 
data or samples randomly located on a regular grid, 
the autocovariance function can still be estimated us-
ing equation (6) by introducing a flag value to identify 
locations that have missing data and not include those 
terms in the estimation of the covariance in equation 
(6). Alternatively, these terms can be set to zero by as-
signing zero values at the missing locations. The new 
estimator is:
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If the sampling is completely random then the sam-
pling locations {t1<t2<t3<, …,<t(N-1)<tN } are random in the 
interval [t1,t2]. In this case, there are two possibilities for 
dealing with the problem. The first method is to assign 
the random experimental locations to locations on a 
regular grid and set as missing data the locations of the 
regular grid that do not have assigned data. In this case 
the autocovariance function can be estimated using 
equation (6). The second method is to approximate the 
estimator of the covariance functions on a regular grid 
of suitable auto-covariance lags. In this case, a lag, a lag 
tolerance and the number of lags (M) must be defined, 
and the power spectrum is estimated in the same man-
ner using the estimated auto-covariance.

A well-known, difficult problem, even for com-
plete data sets, is establishing the confidence level of 
the estimated power spectrum using the maximum 
entropy estimator for uneven time series (Baggero-
er, 1976). The process is very laborious and strong 
assumptions are required to obtain analytical equa-
tions that assess the reliability of the maximum en-
tropy spectral estimates (Burshtein and Weinstein, 
1987; Percival and Walden, 1993). In this case, it is 
more efficient to use a Monte Carlo approach that 
uses computationally intensive methods such as the 
permutation test (Efron and Tibshirani, 1993; Good, 
2000; Pardo-Igúzquiza and Rodríguez-Tovar, 2000). 
In this methodology the power spectrum is calculat-
ed for the original series as well as for a large num-
ber of random permutations of the original time 
series. A permutated time series is defined for the 
same original locations and the experimental data 
of the original time series are assigned at random to 
the different experimental locations. When data are 
missing, only the locations with data are included 
in the random permutation. Thus, by randomly per-
mutating the original data, it is very likely that any 
signal or cyclic pattern that was present in the orig-
inal data will be destroyed and the null hypothesis 
is that the random permutations are different reali-
zations of pure white noise. The maximum entropy 
power spectrum is calculated for each permutated 
time series and for a large number of permutations, 
for example 1,000 as a minimum. The achieved sig-
nificance level (ASL) can be calculated as: 

 

where S(fj) is the ME power spectrum estimated 

from the original sequence and for frequency fj; Si
* (fj) 

is the ME power spectrum estimated from the ith ran-
domly permutated sequence, for the same frequency. 
The achieved confidence level is then calculated, as a 
percentage

 

Results and discussion

Case studies with simulated data sets

Figure 1A shows an even time series that was simulat-
ed with a signal and the addition of zero mean Gaussi-
an random noise and variance equal to 3. This time se-
ries is complete (i.e., even and with no missing data) 
with 500 data and a constant sampling ratio of year. The 
signal comprises three cyclic components (sinusoids) 
with equal amplitudes of one, phases of 45º, 22.5º and 
15º degrees respectively and frequencies of 0.008, 0.05 
and 0.4 respectively. The corresponding periods are 125 
years, 20 years and 2.5 years. The variance of the signal 
is 1.5 and the variance of the noise is 3, giving a signal 
to noise ratio of 0.5. The total variance of the time se-
ries in Figure 1 is 4.2 and thus each cyclic component 
explains 12% of the total variance. The maximum en-
tropy (ME) or autoregressive (AR) spectral estimate of 
this complete sequence is shown in Figure 2A in which 
the spectral peaks of the power spectrum have been 
correctly identified for this case of an even and com-
plete time series with 500 data. It should be noted that, 
in maximum entropy spectral estimation, the variance 
of each cyclic component is proportional to the area 
under the curve of the estimated power spectrum and 
not to the height of the spectral peak. Three cases of 
irregular sampling that illustrate gapped data, central 
hiatuses and random sampling have been obtained 
and are shown in Figures 1B, 1C and 1D respectively. 
Figure 1B is an example of gapped data, that is, a time 
series with hiatuses at regular intervals. This time series 
has been obtained from the time series in Figure 1A 
and has a total of 300 data, that is, there are 200 data 
missing from the complete sequence. Figure 1C shows 
a time series with a single large hiatus in its central 
section. It was obtained from the complete sequence 
in Figure 1B by deleting 200 points and retaining the 
remaining 300 data. Finally, Figure 1D represents an ir-
regular time series with 200 data obtained by randomly 
selecting 200 data from the 500 data of the original time 
series. Note that the data are still on the regular grid de-
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fined by the locations of the complete sequence. This is 
a simpler case than purely random sampling in which 
the locations are selected at random from an interval. 
Thus, in the random time series in Figure 1D there are 
no data in the complete sequence that are closer than 
the constant sampling ratio of one year. In purely ran-
dom sampling two consecutive data could be closer 
than one year. The ME power spectrum estimates are 
shown in Figures 2B, 2C and 2D for gapped, central 
hiatus and random time series respectively. In these 
figures the spectral peaks are clearly identifiable in all 
cases although, as shown by the achieved significance 
level in Figure 3, for the gapped data time series (Figure 
1B), only three periodicities are identified with a high 
confidence level (> 99%). For the time series with the 

large central hiatus (Figure 1C), three periodic compo-
nents have been identified with a high confidence lev-
el (> 99%) but there is a spurious spectral peak in the 
high frequencies of the power spectrum in Figure 2C, 
which has been identified with a high confidence level 
(> 99%) but not as high as the true cyclic components 
that have confidence levels higher than 99.9%. Finally, 
in the random sampling, two of the three components 
have been identified with a high level of confidence (> 
99%) but the low frequency periodicity with the spec-
tral peak in Figure 2D, has a confidence level of only 
79.25%. A comparison of the maximum entropy spec-
tral estimation of uneven time series (Figures 2 and 3) 
with the results of the Lomb-Scargle periodogram esti-
mation of these same time series in Figures 4, 6 and 8 

Figure 1. A. Complete and even time series with 500 data. B. Gapped time series obtained from the complete time series. The number of 
data is 300. C. Time series with a hiatus in the central part and obtained from the complete time series. The number of data is 300. D. Time 
series obtained from the complete time series by selecting 200 samples at random. Note that this is not a case of pure random sampling but 
random sampling from the 500 samples available from the complete time series. In the latter case the points have not been represented by 
lines whereas in the first three (A to C) the points have not been represented but the lines that join them. 
Figura 1. A. Serie complete y con intervalo de muestreo constante, esto es, serie regular, con 500 datos. B. Serie temporal con huecos a 
espaciado regular obtenida de la serie completa. El número de datos es de 300. C. Series temporales con un hiato en la parte central y obte-
nida a partir de la serie completa. El número de datos es de 300. D. Serie temporal obtenida a partir de la serie complete por la elección de 
200 datos al azar. Hay que hacer notar que no se trata de un muestreo aleatorio puro, sino un muestreo aleatorio de entre las 500 muestras 
disponibles a intervalo de muestreo constante en la serie completa. En el último caso los puntos no se han unido por líneas mientras que 
en los tres primeros casos (A a C) los puntos no se han representado pero se han representado las líneas que los unen. 
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of Pardo-Igúzquiza and Rodríguez-Tovar (2013), clear-
ly shows that the advantages of the former are that it 
does not generate spurious spectral peaks that appear 
as side lobes in the power spectrum and its 99% statis-
tical confidence in the permutation test. 

The second experiment is the estimation of the 
power spectrum of the sequence of 100 simulated 
data in Press et al. (1992, upper figure 13.8.1, p. 571) 
and represented in Figure 4A. This is a nosy time se-
ries that has a hidden periodicity frequency of 0.81 cy-
cles per arbitrary time unit (period 1/0.81 = 1.2345 time 
units). We use grid locations with a constant sampling 
interval of 0.1 units and assign the experimental data 
in Figure 4A to the closest experimental location as 
shown in Figure 4B. The achieved significance level is 
shown in Figure 4C. The spectral peak at a frequen-
cy of 0.81 (period 1/0.81 = 1.2345) is clearly identified 
in Figure 4B and, using the permutation test and 10,000 

random permutations of the original data, the estimated 
significance level is higher than 99.8%. The alternative 
approach was to apply the maximum entropy spectral 
estimator by estimating the auto-covariance using an 
auto-covariance lag of 0.2 and a lag tolerance of 0.1. The 
complete set of N(N-1)/2 auto-covariance pairs is calcu-
lated and assigned to the appropriate auto-covariance 
intervals. The resulting estimated power spectrum is 
shown in Figure 5A and the achieved significance lev-
el using the permutation test is shown in Figure 5B. Al-
though the target frequency of 0.81 cycles per time unit 
is also identified, its statistical significance is less than 
the 99.8% level that was achieved by the first alterna-
tive. Furthermore, a harmonic of the main frequency has 
been identified as statistically significant (> 99%) as can 
be seen in Figure 4C. Thus, the first procedure is prefera-
ble for the maximum entropy spectral estimator with un-
even time series and purely random sampling. Note that 

Figure 2. Maximum entropy (ME) or autoregressive (AR) spectral estimates of the time series shown in Figure 1, from A to D respectively 
for the complete (A), gapped (B), series with central hiatus (C) and random locations (D). The number of autoregressive terms are 100, 60, 
60 and 40 respectively, that is, N/5, where N is the number of experimental data in Figure 1.
Figura 2. Estimación espectral, por el método de máxima entropía (ME) o método autorregresivo (AR), de la serie temporal mostrada en 
la Figura 1 y de A a D, respectivamente, para la serie complete (A), serie con huecos a espaciado regular (B), serie con un hiato central (C) 
y serie con muestreo aleatorio (D). El número de términos del proceso autorregresivo considerado es de 100, 60, 60 y 40 respectivamente, 
esto es, N/5, donde N es el número de datos experimentales de la serie temporal mostrada en la Figura 1. 
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this case of purely random sampling overcomes the lim-
itation of the Nyquist frequency that would be obtained 
with the same amount of data in an even time series. The 
100 data in an even time series have a constant sampling 
interval of = 1 arbitrary time unit and frequencies of up 
to the Nyquist frequency of 0.5 and periodicities start-
ing at two time units could be investigated. It would be 
impossible to find the hidden signal with frequency 0.81 
and a period of 1.2345. This observation was also made 
by Press et al. (1992) for the Lomb-Scargle periodogram 
of this same simulated data. The Lomb-Scargle periodo-
gram of this same time series is also presented in Par-
do-Igúzquiza and Rodríguez-Tovar (2012).

Case studies with real data

Two real data sets are shown in Figure 6. Figure 
6A shows the variation in oxygen isotope O (Raymo 

et al., 1992) along a core from the Deep Sea Drilling 
Project in the North Atlantic. The time series has 866 
data with a constant sampling interval of kyrs. The 
maximum entropy power spectrum, estimated using 
the complete sequence in Figure 6A, is shown in Fig-
ure 7A and the confidence level achieved by the per-
mutation test using 10,000 random permutations is 
shown in Figure 8A. The Milankovitch orbital cycles 
(Schwarzacher, 1993) of precession, obliquity and 
eccentricity are clearly identified by the spectral esti-
mation. The very high, statistically significant spectral 
peaks correspond to periods of 216, 153, 124, 96, 76, 
55, 41, 23.6, 22.4 and 19 kyrs and demonstrate that the 
sediments of the deep ocean are an excellent proxy of 
paleoclimatic conditions. As an experiment, the orig-
inal complete sequence has been transformed to an 
uneven time series by deleting at random 50%, 75% 
and 90% of the data. The new data sets have 433, 217 

Figure 3. Achieved confidence levels in percentages assessed by the random permutation test using 10,000 random permutations of the 
ME spectral estimates of the time series shown in Figure 1, from A to D respectively for the complete (A), gapped (b), series with central 
hiatus (C) and random locations (D).
Figura 3. Nivel de confianza (en porcentaje) obtenido por el test de permutación con 10,000 permutaciones aleatorias, para la estimación 
espectral por máxima entropía de la serie temporal mostrada en la Figura 1 y considerando la serie completa (A), la serie con huecos a 
espaciado regulares (B), con un hiato central (C) y con muestreo aleatorio (D). 
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Figure 4. A. Uneven time series identical to those in Press et al. 
(1992, Figure 13.8.1, p. 571) and with 100 data. B. Maximum entropy 
power spectrum estimate for the data given in A. C. Achieved confi-
dence level for the estimated power spectrum in B.
Figura 4. A. Serie temporal irregular idéntica a la presentada en 
Press et al. (1992, Figura 13.8.1, p. 571) y que tiene 100 datos. B. Po-
tencia spectral, estimada por máxima entropía, de la serie temporal 
mostrada en A. C. Nivel de confianza obtenido para la estimación 
espectral mostrada en B.

Figure 5. A. Maximum entropy power spectrum estimate of the data 
given in Figure 4A. B. Achieved confidence level for the estimated 
power spectrum in A.
Figura 5. A. Potencia spectral, estimada por máxima entropía, de 
los datos mostrados en la figura 4A. B. Nivel de confianza alcanzado 
por la estimación de la potencia espectral mostrada en A.

and 87 data respectively. Maximum entropy power 
spectrum estimation was applied to the new une-
ven sequences and the estimated power spectra are 
shown in Figures 7B, 7C and 7D for 50%, 75% and 
90% of missing data respectively. The achieved con-
fidence levels of the spectral estimates evaluated 
by the permutation test using 10,000 random per-
mutations are shown in Figures 8B, 8C and 8D for 
50%, 75% and 90% of missing data respectively. Fig-
ures 7B and 8B show that when 50% of the data are 
missing, the main Milankovitch spectral peaks in the 
precession, obliquity and eccentricity bands are still 
detected. The same can be said even when 75% of 
the data are missing, as shown in Figures 7C and 8C. 
Furthermore, in the extreme case, when 90% of the 
original data are missing, important information can 
still be recovered as the obliquity cycle and one of 
the eccentricity cycles are detected.
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Figure 6. Real time series used in the case studies. A. Time series of 
oxygen isotope O (Raymo et al., 1992) for the last 2.7 million years. 
B. Detrended time series of thickness of the annual banding in a 
stalagmite in the Carlsbad cave (New Mexico, USA) for the last 3000 
years before the present (Polyak and Asmerom, 2001). Some hiatus-
es have been highlighted by red arrows with thick red arrows mark-
ing the main ones.
Figura 6. Series temporales reales utilizadas en los casos de estu-
dio. A. Serie temporal del isótopo de oxígeno O (Raymo et al., 1992) 
para los últimos 2.7 millones de años. B. Serie temporal, donde se 
ha quitado la tendencia, del espesor del bandeado anual de una 
estalagmita de la cueva Carlsbad (Nuevo Méjico, EEUU) para los 
últimos 3000 años antes del presente. (Polyak and Asmerom, 2001). 
Algunos hiatos se han remarcado con las flechas rojas con las de 
mayor grosor señalando a los hiatos más importantes.

The second real time series is shown in Figure 
6B and represents the detrended time series of the 
thickness (in mm) of the annual banding in a stalag-
mite in the Carlsbad cave (New Mexico, USA) over 
the last 3000 years before the present (Polyak and As-
merom, 2001). Some hiatuses have been highlight-
ed by red arrows in Figure 6B. The time series has 
1896 data on a regular grid with a constant sampling 
interval of kyr but with hiatuses. The hiatuses are de-
noted by a flag value of -9999, which is used in the 
AUTORSE5 computer program for missing data, and 
the final length of the series is 2672 locations that 
have experimental or missing data. Thus, despite 

the appearance of Figure 6B, 30% of the sequence 
is missing data. The estimated maximum entropy 
power spectrum and the confidence achieved by the 
permutation test using 10,000 random permutations 
are shown in Figures 9A and 9B respectively. The 
order chosen for the auto-correlation model was M 
= 400 which is approximately N/5, where N is the 
number of experimental data. The very high statis-
tically significant spectral peaks correspond to pe-
riods of 243, 148, 76, 59, 51, 45, 36, 27.8, 26.2, 22.8, 
13.4 and 11 yrs, showing that speleothems also con-
tain excellent proxies of paleoclimatic conditions, in 
this case in relation to solar activity and its cycles 
that have an effect on climate. Thus the 11-year sun 
spots cycle (Gnevyshev, 1977), the 22-year Hale cy-
cle (Gnevyshev and Ohl, 1948), the Gleissberg and 
De Vries/Suess cycles, with timescales of 60–120 yrs 
and 200–300 yrs, respectively (Vecchio et al., 2017) 
have been clearly identified.

The detrending procedure of this time series is 
described in Pardo-Igúzquiza and Rodríguez-Tovar 
(2013) where the Lomb-Scargle periodogram was 
used for estimating the power spectrum of this un-
even time series. A comparison of Figure 16 in Par-
do-Igúzquiza and Rodríguez-Tovar (2013) with Fig-
ure 9, shows the high resolution performance of the 
maximum entropy spectral estimator for uneven 
time series and its significant advantage over the 
Lomb-Scargle periodogram approach. 

Conclusions

Uneven time series are often found in the geoscienc-
es (e.g., cyclo-stratigraphy, paleoclimatology, seis-
mology) for various reasons such as different forms 
of missing data (hiatuses, lost data, sampling fail-
ures, etc.) and by the transformation from a space 
scale (boreholes, stratigraphic sections, etc.) to a 
time scale with non-constant sedimentation rates. 
Maximum entropy spectral estimation provides 
high-resolution estimates of the power spectrum for 
complete and even time series. The procedure can 
also be adapted to provide high-resolution power 
spectrum estimates for uneven time series. The per-
formance of the estimator has been demonstrated 
using simulated and real time series and the statis-
tical significance of the spectral estimates has been 
evaluated by the permutation test. The procedure for 
maximum entropy spectral estimation for uneven 
time series has been coded in the Fortran program 
AUTORSE5, which is freely available on request from 
the authors. Maximum entropy power spectrum esti-
mation of uneven time series can be used jointly with 
other spectral estimators such as the Lomb-Scargle 
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Figure 7. Maximum entropy spectral estimates of the data set shown in Figure 6A. A. Using the complete sequence with 866 data. B. For 
the sequence where 50 % of the data have been deleted at random, with 433 data remaining. C. For the sequence where 75 % of the data 
have been deleted at random, with 217 data remaining. D. For the sequence where 90 % of the data have been deleted at random, with 87 
data remaining. The black line is the power spectrum of the complete sequence and the red dashed line represents the power spectrum of 
the uneven sequences.
Figura 7. Estimación de la potencia espectral por el método de máxima entropía de la serie temporal mostrada en la Figura 6A. A. Utilizando 
la secuencia regular y completa de 866 datos. B. Para la misma secuencia de la Figura 6A pero con 50% de datos perdidos, esto es con los 
433 datos restantes. C. Para la misma secuencia de la Figura 6A pero con 75% de datos perdidos, esto es con los 217 datos restantes. D. 
Para la misma secuencia de la Figura 6A pero con 90% de datos perdidos, esto es con los 87 datos restantes. La línea negra continua es la 
potencia espectral obtenida con la secuencia completa y la línea roja discontinua representa la potencia espectral de las series temporales 
irregulares con datos perdidos.

periodogram. This is a good strategy for spectral 
analysis in geoscience applications as the use of sev-
eral methodologies benefits from the advantages of 
each of them. The maximum entropy estimator has a 
high resolution performance with uneven time series 
and is free of the side lobes that cause problems in 
the periodogram approach.
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Figure 8. Achieved confidence level of the maximum entropy power spectrum estimates of the complete even sequence (A) and for the 
uneven time series with 50% of the data missing (B), 75% of data missing (C) and 90% of data missing (D).
Figura 8. Nivel de confianza obtenido para la potencia espectral estimada por máxima entropía de la secuencia regular y completa (A) y 
para las series temporales irregulares con 50% de los datos perdidos (B), 75% de los datos perdidos (C) y 90% de datos perdidos (D). 

Figure 9. A. Maximum entropy power spectrum estimate of the uneven time series shown in Figure 7B. An autoregressive order of M = 400 
terms, which is around N/5, was used in the estimation. B. Confidence level obtained by the permutation test with 10,000 random permu-
tations.
Figura 9. A. Potencia espectral, estimada por el médodo de máxima entropía, de la serie irregular mostrada en la Figura 7B. Se ha utilizado 
un orden de M = 400 términos para el proceso autorregresivo, lo que equivale aproximadamente a N/5, siendo N el número de datos expe-
rimentales. B. Nivel de confianza obtenido por el test de permutación utilizando 10,000 permutaciones aleatorias. 
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